Written Homework# $\begin{array}{c}\n1 \\
0 \\
2\n\end{array}$ \equiv $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$ $\geq 2b = -2 \Rightarrow b = -1$ $a = 2$ $2d=2 \Rightarrow d=1$ $c = -1$ $P + 4 = 2$ $2f = 0 \implies f = 0$ $e = 2$ 000 $:Q2$ $\overline{2}$ cd $\overline{\overline{3}}$ e Ω (a) $=T(x)$ z_{2} (b) The answer would become $0+3b=-1$ \Rightarrow $(2)+3(-1)=-1$ $C+3d=2$ > $(-1)+3(1)=2$ impossible pecause the linear trans $e+3f=2 \Rightarrow (2)+3(0)=2$ formation in the third equation would imply et3f = 1, and from the first two equations et3f=2 So this answer would be nionsistent and therefore T/x) would not be a linear transformation. 2 (a) T cannot be 1-1, because T is only 1-1 if and only if the only solution To $T(x)=0$ is $x=0$, and $x\neq 0$ in this situation. (b) T can be onto, because T(x)=0 doesn't mean that there can't be an element in the domain that corresponds to each element in the codomain χ
For example: \top ($\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$) $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \top \begin{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 1$ This is an example of a Nonzero vector $\vec{x} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and an onto transformanen matrix oio which cheases an output = to 0. (c) T(u) & T(v) must be linearly rependent if usy are linearly dipendent because T(v) = T(cu) where c is whatever scalar makes v=u. Then T(v) = CT(u) and they are linear combination! of each other, thus naking them likearly dependent. (d) $T(u)$ & $T(v)$ are not guaranteed to be linearly independent because the transformation matrix (333 ...) could turn any set of Incary independent vectors into the 5 vector, making there linearly dependent 3) In order for T To be a linear transformation, T (V+u) = T(u)+T(v) (additive property) and τ (cu) = e $T(u)$. Therefore, $w = 0$, because $T($ n+v) = $($ n+v+w= $T(u)$ + $\overline{T}(v)$ (if w=0) and $T(cu)$ = $c($ u+w) = cu (ifw=0) and $T(v+u) = (v+u)+w \neq v+u+2w$ (if $w \neq 0$) and $c(T(v)) = c(v+w) \neq cv+w$ (if $w \neq 0$)

B

Written Homework 4 (continued) GOING FROM 1x, y, Z) -> (x, y) nearones the z-courdinate A So the final corners ane: (1,0), (0,1), (0,0). This is a linear transformation because it preserves the additive property and scalar multiplication: $T(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2) (10)$ $T(c(x,y,z)) = (cx, cy)$ The anea of the image after projection is $\frac{1}{2}\left(1(1-0)+0(0-0)+0(0-1)\right)$ $=\frac{1}{2}$ (b) (c) yes, because a linear transformation can scale the original vectors, including presenting the original mea by adding ascaling factor while mapping one of the corners to (0,0) $6)$ S. T cannot be $1-1$ because any function that goes from $R^3 \Rightarrow R^2$ cannot have a unique output value mapped from each input value, and any output after that (R2 -> R4) would not climpe that. 日間

 \rightarrow

 \bullet

A

 \blacktriangleright

 \leftarrow

 $\overline{}$

 $\frac{1}{4}$

Ő

网

原

(1) (a) Find a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that

$$
T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\\2\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\2\end{bmatrix}\right) = \begin{bmatrix}-2\\2\\0\end{bmatrix}, \text{ and } T\left(\begin{bmatrix}1\\3\end{bmatrix}\right) = \begin{bmatrix}-1\\2\\2\end{bmatrix},
$$

or if it's impossible, explain why.

(b) How does your answer change if the third condition changes to

$$
T\left(\begin{bmatrix}1\\3\end{bmatrix}\right) = \begin{bmatrix}-1\\2\\1\end{bmatrix}?
$$

(2) Assume $T : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation.

- (a) Suppose there is a nonzero vector $\mathbf{x} \in \mathbb{R}^m$ such that $T(\mathbf{x}) = \mathbf{0}$. Is it possible that T is one-to-one? Give an example, or explain why it's not possible.
- (b) Suppose there is a nonzero vector $\mathbf{x} \in \mathbb{R}^m$ such that $T(\mathbf{x}) = \mathbf{0}$. Is it possible that T is onto? Give an example, or explain why it's not possible.
- (c) Suppose that **u** and **v** are linearly dependent vectors in \mathbb{R}^m . Show that $T(\mathbf{u})$ and $T(\mathbf{v})$ are also linearly dependent.
- (d) Suppose that **u** and **v** are linearly *independent* vectors in \mathbb{R}^m . Is it guaranteed that $T(\mathbf{u})$ and $T(\mathbf{v})$ are also linearly independent? If yes, explain why. If no, give an example where this is not the case.
- (3) Let $\mathbf{w} \in \mathbb{R}^n$ and suppose that $T : \mathbb{R}^n \to \mathbb{R}^n$ is given by $T(\mathbf{v}) = \mathbf{v} + \mathbf{w}$. Determine the exact conditions on \bf{w} that make T a linear transformation. (First, show that if your condition on \bf{w} is satisfied, then T is a linear transformation. Then show that if your condition on \bf{w} is not satisfied, then T is not a linear transformation.)
- (4) Consider the triangle Δ in \mathbb{R}^3 with corners $(1,0,0), (0,1,0), (0,0,1)$.
	- (a) Find the image of Δ under the projection that sends $(x, y, z) \in \mathbb{R}^3 \mapsto (x, y) \in \mathbb{R}^2$. Is this a linear transformation?
	- (b) What the area of the image of Δ after the projection?
	- (c) Is there a linear transformation that will send Δ to the xy-plane so that the image has the same area as Δ , and one of the corners of the image is $(0,0)$?
- (5) Say we have linear transformations $T : \mathbb{R}^3 \to \mathbb{R}^2$ and $S : \mathbb{R}^2 \to \mathbb{R}^4$. Let $S \circ T : \mathbb{R}^3 \to \mathbb{R}^4$ be the composition (that is, $\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^2 \xrightarrow{S} \mathbb{R}^4$). Can $S \circ T$ be one-to-one? (Hint: Start by thinking about all **x** such that $T(\mathbf{x}) = 0$.)